Амур и Купидон.

 ФЕНИКС   На связи с единомышленниками           

 Поддержка проекта 

Авторизуйтесь с помощью соцсетей и служб

Амур и Купидон.

Автор
Опубликовано: 25 дней назад (26 сентября 2020)
+6
: 6
Амур и Купидон.


Амур попадает в цель 80 раз из 100, а Купидон - 90 раз из 100. Каков процент вероятности, что они оба попадут в одну цель, выстрелив одновременно?
524 просмотра
Комментарии (47)
Nif # 26 сентября 2020 в 10:36 +6
Спойлер
love angel
Александр Борисенко # 27 сентября 2020 в 01:33 +5
Нет! Задача сложнее, чем кажется на первый взгляд. Надо проанализировать варианты (А-попал + К-не попал); (А-не попал + К-не попал) и т.д. И при этом ещё окунуться в теорию вероятностей. smile_6 Тогда, быть может, вытанцуется! laugh
ШИКО # 28 сентября 2020 в 17:12 +6
На мой взгляд Ниф прав, - вероятность того, что оба попадут одновременно 0.72
Условная пара сочетаний попаданий Амура (коих в общей сложности 45) и Купидона (9).
1 1 1 1 0 1 1 0 1 1 - А
1 1 0 1 1 1 1 1 1 1 - К - по 7 одновременных попаданий из 10.
При том же раскладе у А есть 2 принципиально отличающихся расклада у К., когда одновременно промахиваются оба.
1 1 1 1 0 1 1 0 1 1 - А
1 1 1 1 0 1 1 1 1 1 - К
и
1 1 1 1 0 1 1 0 1 1 - А
1 1 1 1 1 1 1 0 1 1 - К - по 8 одновременных попаданий из 10
В каждом из 45 возможных раскладов А число одновременных попаданий А и К одинаковое. Число одновременных промахов - тоже.
Общая таблица выглядела бы так:

1 1 1 1 0 1 1 0 1 1 - А
0 1 1 1 1 1 1 1 1 1 - К 7
1 0 1 1 1 1 1 1 1 1 - К 7
1 1 0 1 1 1 1 1 1 1 - К 7
1 1 1 0 1 1 1 1 1 1 - К 7
1 1 1 1 0 1 1 1 1 1 - К 8
1 1 1 1 1 0 1 1 1 1 - К 7
1 1 1 1 1 1 0 1 1 1 - К 7
1 1 1 1 1 1 1 0 1 1 - К 8
1 1 1 1 1 1 1 1 0 1 - К 7
1 1 1 1 1 1 1 1 1 0 - К 7 - 72 одновременных попадания из 100 выстрелов. Разница лишь в том, где будут вылезать две "восьмёрки"

Та же вероятность одновременного попадания для любого из 45 раскладов у А.
Ответ на вопрос задачи 72%
Nif # 28 сентября 2020 в 19:26 +6
smile_15 laugh
ШИКО # 28 сентября 2020 в 23:21 +6
smile_15 laugh
Александр Борисенко # 29 сентября 2020 в 01:52 +5
С авторским ответом 72% не совпадает! laugh
Возможно, дело в том, что автор располагает данные не в таблице, а на дереве. Тогда яснее виден, в частности, случай, когда Амур попал, а Купидон не попал. Какова вероятность такого случая? scratch
ШИКО # 29 сентября 2020 в 10:06 +5
Не знаю! Может быть.
У меня лишь вопрос остался. Откуда взять вероятность стрельбы по одной цели? Если один в Греции стрельбой занимается, другой в Риме другую аудиторию обслуживает, то вероятность эта практически 0.
И ещё. Вероятность из многих параметров складывается. Возможно, в условии она даётся на текущий момент, но один всё прицельнее стреляет, другой наоборот?
ШИКО # 29 сентября 2020 в 12:18 +5
P.S. Статистики совместных браков греков и римлян, если дерево оказалось бы вдруг генеалогическим, мне не удалось. Хотя и не понятно при этом, откуда А. и К. указанные проценты имеют.
Дальше я пас!
Александр Борисенко # 30 сентября 2020 в 00:40 +5
О персонажах я думал менее всего, требовалась пара колоритных, подвернулись эти! laugh
Александр Борисенко # 1 октября 2020 в 00:28 +3
Абсолютно правильно, ШИКО, 72%! smile_16 smile smile_20
Прошу прощения за моё зряшнее упрямство! zst
Александр Борисенко # 1 октября 2020 в 00:24 +3
Совершенно верно, Nif, вероятность двух попаданий 0,9 * 0,8 = 0,72! smile_16 smile smile_20
Nif # 27 сентября 2020 в 11:36 +5
Худ бергер, худ бер бер
Виддер балы.
Семтергер, бельвердер,
Хардик сантры.

Риттарга бальтина
Хиндер бендэ,
Ар банда виртин да
Карманда вэ.

Хрук мурдун чуринда
Рикалин да,
Кундер месеренде
Аль эльлинда.

Риттарга бальтина
Хиндер бендэ,
Ар банда виртин да
Карманда вэ.

Трикардин, верендэ
Берэ каса,
Ликарда харисде
Гор вин деса!

Риттарга бальтина
Хиндер бендэ,
Ар банда виртин да
Карманда вэ.
smile_6
Попов Андрей # 27 сентября 2020 в 16:52 +5
Хорошие стихи..Надо их под музыку исполнять - получится ПЕСНЯ music (Примерно такая) dance
)С заключительными словами -

Карманда вэ.Карманда вэ. вэ-э-эЭ-ЭЭ-ЭЭЭ dance

ШИКО # 27 сентября 2020 в 22:53 +5
Не только как пиит! В качестве композитора, Андрей, Вы тоже хороши! joke
Попов Андрей # 28 сентября 2020 в 13:47 +5
Аль эльлинда.- хорошо бы !!! love
Александр Борисенко # 27 сентября 2020 в 23:28 +5
Никак не могу перевести "Хардик сантры" с берберского smile_6
Александр Борисенко # 27 сентября 2020 в 23:32 +5
К тому же автоматический переводчик сказал, что это язык Vietnamese scratch
Александр Борисенко # 27 сентября 2020 в 23:37 +5
Кажется начинаю понимать: теория вероятностей - язык незнакомый есть! laugh
Попов Андрей # 28 сентября 2020 в 04:21 +5
" Хрук мурдун чуринда
Рикалин да"
Согласно языку "телепатической глаголицы"это значит - "опять была магнитная буря"

А растянутое

э-э-ээ-эээ-ээээ

переводится (да сколько ж это можно то

О-О-ОО-ООО-ОООО-ОООО-ОХ

Попов Андрей # 28 сентября 2020 в 13:52 +6
"Хардик сантры" - то же что "бузык кашатунга" hoho
Попов Андрей # 28 сентября 2020 в 08:09 +6
Ар банда виртин да
Карманда вэ.
Магнитная буря становится

МОЩНЕЕ smile_6


о-о-ох....... zst
Nif # 28 сентября 2020 в 11:34 +6
Ответом в задаче видимо будет диапазон от 70% до 80%

smile
Александр Борисенко # 1 октября 2020 в 00:33 +4
Так и есть, Nif! smile_16 smile smile_20
Попов Андрей # 28 сентября 2020 в 13:41 +6
Ликарда харисде
Гор вин деса!

Магнитный шторм,
вроде,- ослабевает ???

..........

Аль эльлинда.- хорошо бы !!!

Nif # 28 сентября 2020 в 14:09 +6
laugh
voliy # 29 сентября 2020 в 10:12 +6
Окунулась, с трудом попыталась понять логику.
Не попали оба- 2%
Один попал, второй промахнулся-26%
Оба попали-72%
Если хотя бы один попал в цель, а второй промахнулся, тогда 98%
Александр Борисенко # 1 октября 2020 в 00:50 +4
Совершенно правильный расчёт, voliy: два попадания 72%, ровно одно попадание 26%, хотя бы одно попадание 98%, ни одного 2%! smile_16 smile smile_20
voliy # 29 сентября 2020 в 16:28 +6
Но если принять во внимание, что стрелок один, бог любви, то тогда цель одна , стрелок один, выстрелов 2.
Первый производится с вероятностью попадания 0,8, а второй-0,9.
Тогда вероятность попадания в цель вычисляется так.
Вероятность непопадания:(1-0,8)*(1-0,9)=0,02
Вероятность попадания: 1-0,02=0,98, т.е. 98%
ШИКО # 29 сентября 2020 в 18:34 +6
voliy! Вот дословный вопрос: " Каков процент вероятности, что они оба попадут в одну цель, выстрелив одновременно?" Не "один бог любви", как пытаетесь представить Вы, а "оба", - из древнеримской и древнегреческой мифологии по богу.
voliy # 29 сентября 2020 в 20:26 +6
ШИКО, задача явно с подвохом)))
ШИКО # 29 сентября 2020 в 20:35 +6
Да мне, voliy, прямой намёк даётся: "Возможно, дело в том, что автор располагает данные не в таблице, а на дереве." Единственное - на каком дереве не понял. Не на берёзе же!
Александр Борисенко # 30 сентября 2020 в 23:53 +4
Дерево двухярусное: на первом ярусе развилка А попал - А не попал, на втором ярусе на каждой ветви - тоже по 2 варианта К попал - К не попал. Листья - численные значения. Получается наглядно! laugh
Александр Борисенко # 30 сентября 2020 в 00:49 +5
Не совсем понял, какая вероятность определена в 98% - одного попадания или двух попаданий! scratch
Александр Борисенко # 1 октября 2020 в 00:55 +3
Теперь понял различие: 98% - мишень поражена (одним или двумя), 26% - одно попадание в мишень (но не два)! getImage 1
Nif # 29 сентября 2020 в 20:54 +5

Амур с Купидоном
Решили собраться,
Чтобы разобраться
Кто выстрелит первым?

Амурик заохал:
- Задача с подвохом!
Купик сказал:
- Зреет скандал!

И так и эдак примерялись,
По древу мыслью растекались...

Да только воз и ныне там.

zlo
Попов Андрей # 30 сентября 2020 в 08:32 +5
Амур стрелял с ракетной шахты station
Попал он явно
ГРИБ такой
getImage 3

А Купидон направил бластер smile_11
Он поточнее.........
Очки
Раз
СКАП
А
ЛИ
На
ПОЛ
shock

Александр Борисенко # 30 сентября 2020 в 01:02 +5
Условие сформулировано достаточно однозначно: "Каков процент вероятности, что они оба попадут в одну цель, выстрелив одновременно?"
Но вот с вероятностями различных вариантов следовало бы разобраться детальнее. Их всего-то 4: +А+К, +А-К, -А+К, -А-К. Очерёдность стрельбы в данном случае не играет роли, поскольку стреляют одновременно!
Спойлер
voliy # 30 сентября 2020 в 08:30 +6
Если вероятность применить после анализа, то результат будет другим.
Крайний случай.
А-20 промахов, К-20 попаданий
А-10 попаданий, К- 10 промахов
А- 70 попаданий, К-70 попаданий.
Применяем вероятность.
Оба не попали- 0,3*0,3=0,09
Один попал- 0,7*0,3+0,7*0,3=0,42
Оба попали- 0,7*0,7=0,49
0,9+0,42+0,49=1
Это решение было у меня первым, но потом что-то пошло не так. hoho
Nif # 30 сентября 2020 в 09:11 +5
Всякое решение проверяется опытом. Надо бы пострелять... crazy
Александр Борисенко # 1 октября 2020 в 00:08 +5
Хорошая мысль, Nif! Можно взять по 10 монеток на каждого, из них у одного - 2 монетки медные и 8 серебряных, у другого - 1 медная и 9 серебряных. Перемешать и брать по монетке из каждой кучки. Проделать раз 10 и зафиксировать частоты. Результат будет, конечно, приблизительный, но достаточно наглядный! dance
ШИКО # 30 сентября 2020 в 10:14 +6
У меня получилось 0,9+0,42+0,49=1,81. Не пройдёт, voliy, и это.
Ellinka # 30 сентября 2020 в 10:25 +7
Она имела в виду 0,09+0,42+0,49=1 zst
voliy # 30 сентября 2020 в 15:24 +6
Да, с утречка я растилёпистей, чем обычно hoho smile_8
voliy # 30 сентября 2020 в 15:22 +6
smile_7
Александр Борисенко # 30 сентября 2020 в 23:56 +4
Начнём с того, voliy, что если оба не попали, то эта вероятность = 0,2 * 0,1 = 0,02... laugh
Александр Борисенко # 1 октября 2020 в 00:22 +4
Позор!!!! zst
Я переврал автора: у него вопрос о вероятности попадания (подразумевается, что цель поражена), а у меня - о вероятности попадания обоими. Значит правильный ответ уже давно был дан, и я напрасно колбасился! getImage 3
Александр Борисенко # 2 октября 2020 в 01:25 +2
Задачка, впрочем, оказалась довольно интересная. Кто бы мог подумать, что можно отдельно определять вероятности таких случаев: попали оба; попал хотя бы один; попал ровно один; попал только первый, попал только второй. Удивительно! А ведь если бы не моя погрешность, до таких деталей вряд ли добрались бы laugh getImage 1

Новости клубов

11 минут назад
24 минуты назад
Раиса Петрошенко пишет пост Петунии в блоге клуба СИРЕНЕВЫЙ
4 часа назад
5 часов назад
5 часов назад
Ирина пишет пост "Пьян от любви". в блоге клуба Верни мне музыку
9 часов назад
10 часов назад